2 research outputs found

    Time-optimal path planning in dynamic flows using level set equations: realistic applications

    Get PDF
    The level set methodology for time-optimal path planning is employed to predict collision-free and fastest-time trajectories for swarms of underwater vehicles deployed in the Philippine Archipelago region. To simulate the multiscale ocean flows in this complex region, a data-assimilative primitive-equation ocean modeling system is employed with telescoping domains that are interconnected by implicit two-way nesting. These data-driven multiresolution simulations provide a realistic flow environment, including variable large-scale currents, strong jets, eddies, wind-driven currents, and tides. The properties and capabilities of the rigorous level set methodology are illustrated and assessed quantitatively for several vehicle types and mission scenarios. Feasibility studies of all-to-all broadcast missions, leading to minimal time transmission between source and receiver locations, are performed using a large number of vehicles. The results with gliders and faster propelled vehicles are compared. Reachability studies, i.e., determining the boundaries of regions that can be reached by vehicles for exploratory missions, are then exemplified and analyzed. Finally, the methodology is used to determine the optimal strategies for fastest-time pick up of deployed gliders by means of underway surface vessels or stationary platforms. The results highlight the complex effects of multiscale flows on the optimal paths, the need to utilize the ocean environment for more efficient autonomous missions, and the benefits of including ocean forecasts in the planning of time-optimal paths.United States. Office of Naval Research (Grant N00014-09-1-0676 (Science of Autonomy - A-MISSION))United States. Office of Naval Research (Grant N00014-07-1-0473 (PhilEx))United States. Office of Naval Research (Grant N00014-12-1-0944 (ONR6.2))United States. Office of Naval Research (Grant N00014-13-1-0518 (Multi-DA)

    Time-optimal path planning in dynamic flows using level set equations: theory and schemes

    Get PDF
    We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.United States. Office of Naval Research (Grant N00014-09-1-0676 (Science of Autonomy - A-MISSION))United States. Office of Naval Research (Grant N00014-12-1-0944 (ONR6.2))Natural Sciences and Engineering Research Council of Canada (Postgraduate Fellowship
    corecore